skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hutchings, Jack"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 15, 2026
  2. The Carbon in Permafrost Experimental Heating Research (CiPEHR) project addresses the following questions: 1) Does ecosystem warming cause a net release of C from the ecosystem to the atmosphere?, 2) Does the decomposition of old C, that comprises the bulk of the soil C pool, influence ecosystem C loss?, and 3) How do winter and summer warming alone, and in combination, affect ecosystem C exchange? We are answering these questions using a combination of field and laboratory experiments to measure ecosystem carbon balance and radiocarbon isotope ratios at a warming experiment located in an upland tundra field site near Healy, Alaska in the foothills of the Alaska Range. This data set includes weekly thaw depth measurements collected from winter warming, summer warming, and control treatment plots at CiPEHR. Additional measurements from on-plot gas flux wells, water table monitoring wells, and off-plot locations are also reported. Note that the experimental warming portion of this experiment concluded in 2022. These data are a continuation of measurements taken at previously warmed plots but plots were not actively manipulated after 2022. 
    more » « less
  3. In this larger study, we are asking the question: Is old carbon that comprises the bulk of the soil organic matter pool released in response to thawing of permafrost? We are answering this question by using a combination of field and laboratory experiments to measure radiocarbon isotope ratios in soil organic matter, soil respiration, and dissolved organic carbon, in tundra ecosystems. The objective of these proposed measurements is to develop a mechanistic understanding of the SOM sources contributing to C losses following permafrost thawing. We are making these measurements at an established tundra field site near Healy, Alaska in the foothills of the Alaska Range. Field measurements center on a natural experiment where permafrost has been observed to warm and thaw over the past several decades. This area represents a gradient of sites each with a different degree of change due to permafrost thawing. As such, this area is unique for addressing questions at the time and spatial scales relevant for change in arctic ecosystems. 
    more » « less
  4. The Common Era history of effective moisture in the Central Andes is poorly understood, as most Andean proxy records reflect large-scale atmospheric circulation over the South American lowlands rather than localized precipitation vs. evaporation. Here we present 1800-year leaf wax hydrogen and carbon isotope sedimentary records from Lake Chacacocha (13.96°S, 71.08°W, 4,860 m asl.) in the Central Andes. Leaf wax δ2H from different chain lengths offers information about large-scale atmospheric conditions and local-scale effective moisture. Our leaf wax δ2H data record a gradual intensification of the South American summer monsoon (SASM) beginning around ~1250 CE, prior to the external forcings of the Little Ice Age (LIA). Despite peak SASM intensification, our leaf wax δ13C data reveal a locally arid interval between ca. 1600 and 1800 CE. The arid interval was most likely driven by enhanced evaporation and reduced local precipitation, as indicated by the hydrogen isotope fractionation between mid- and long-chain n-alkanes as well as by climate model simulations. Our results help to reconcile conflicting interpretations of the SASM, glacial, and lake-level histories in the Central Andes during the Common Era. 
    more » « less
    Free, publicly-accessible full text available December 12, 2025
  5. Abstract Climate‐driven thawing of Arctic permafrost renders its vast carbon reserves susceptible to microbial degradation, serving as a potentially potent positive feedback hidden within the climate system. While seemingly intuitive, the relationship between thermally driven permafrost losses and organic carbon (OC) export remains largely unexplored in natural settings. Filling this knowledge gap, we present down‐core bulk and compound‐specific radiocarbon records of permafrost change from a sediment core taken within the Alaskan Colville River delta spanning the lastc. 2,700 years. Fingerprinted by significantly older radiocarbon ages of bulk OC and long‐chain fatty acids, these data expose a thermally driven increase in permafrost OC export and/or deepening of mobilizable permafrost layers over the lastc. 160 years after the Little Ice Age. Comparison of OC content and radiocarbon data between recent and Roman warming episodes likely implies that the rate of warming, alongside the prevailing boundary conditions, may dictate the ultimate fate of the Arctic's permafrost inventory. Our findings highlight the importance of leveraging geological records as archives of Arctic permafrost mobilization dynamics with temperature change. 
    more » « less